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A Langevin-type transition state model is developed to take account of the internal rotation energy in exothermic
reactive collisions between neutral molecules. Energy and total angular momentum are both rigorously
conserved. Reactive rate coefficients attain a maximum of a few 10-10 cm3/s at temperatures in the range
10-30 K decreasing rapidly at higher temperatures. Results for a representative selection of well-studied
systems, Si-O2, CN-O2, Si-NO, are in good agreement with experimental observations. At higher
temperatures, typically around 100 K or greater, the rate coefficient exhibits a T-1/3 dependence.

1. Introduction

Exothermic reactions in ion-molecule collisions tend to be
very rapid at low temperatures and their measured rate coef-
ficients are generally in good agreement with the predictions
of the simple Langevin capture model1,2 for nonpolar reactants.
In ion reactions with polar molecules, the adiabatic capture
centrifugal approximation (ACCSA)3,4 and variants thereof5-9

have proved to be satisfactory.10,11 This led the way to great
advance in our understanding of the photochemistry of the
interstellar medium, where ion-molecule reactions play a major
role.

The Langevin capture model appears to be much less
satisfactory for treating exothermic reactions between neutral
molecules. In general, the measured rate coefficients of
neutral-neutral reactions, only agree with the capture model
predictions for extremely low temperatures of around 10-20
K, where rate coefficients of a few10-10cm3s-1 are attained.12-15

However, at higher temperatures, the rate coefficients decrease
rapidly to values of a few 10-11 cm3 s-1 for temperatures of the
order of 100 K or more. Of course, the range of validity of a
capture model is expected to be more restricted than that for
ion-molecule reactions since the attractive long-range interac-
tion potential between neutral reactants is much weaker than
that for ion-neutral systems. But, even making allowance for
a weaker long-range interaction, it is clear that, as formulated,
the Langevin capture model is unable to explain the experi-
mental results. The aim of this work is to understand why.

One obvious weakness of the Langevin capture model stems
from its neglect of the internal rotation of the reactants. It is
known from the work of Troe7 and of Phillips16 that the internal
rotation energy can have a profound influence on ion-molecule
reactions. So it is to be expected that the angular momentum
conservation of the collision complex may also modify the rate
coefficient when one or both of the reactants has internal
rotational energy.

To simplify the presentation, we shall first consider a reaction
between atom A, in its ground state (with no fine structure),
and molecule M in its ground vibrational state but in some
excited rotational quantum state j with energy Ej ) Bj(j + 1),

where B is the rotation constant of M. The relative kinetic energy
of the reactants is denoted by Et. The method can, of course,
be generalized to treat the case when the atom has a fine
structure or when both reactants are molecules with internal
rotation.

Except for the case of j )0, to each j level, there correspond
(2j + 1) degenerate states|jm〉. We adopt the standard convention
that the average cross section σj j(Et) for a molecule in a rotation
level j, as a sum over all possible m and an average over the
(2j + 1) initial states. Unfortunately, there are no available data
on such cross sections in the 1-100 meV energy range and
there is, at present, no way of testing calculated cross sections.
However, rate coefficients measurements offer a means to test
some aspects of the theoretical model.

Rate coefficients are obtained from cross sections by averag-
ing over the distribution of the internal rotational states and the
kinetic energy of the reactants. In this work, it will be assumed
that the reactants are in thermal equilibrium, where the rotational
state distribution is characterized by the kinetic temperature T
of the reactants. (It may be remarked that this condition may
not be satisfied in certain applications, for example, in dilute
interstellar space. However, most laboratory experiments are
carried out under thermal conditions. See Sims et al.12 for a
discussion of this point). We note that for a given total energy
E of the reactants, there is an equipartition of energy between
the internal energy states Ejand the kinetic energy Et with the
condition that E ) Et + Ej.

Atomic units are used throughout except where otherwise
stated.

2. Calculation of Reactive Cross Section

First of all, let us recall the basic hypothesis of the capture
model, when applied to exothermic reactions involving neutral
molecules with no internal rotation This is, of course, a rather
academic exercise since many excited rotational levels of typical
interstellar molecules, such as CN, O2, or CO, are significantly
populated even at relatively low temperatures. So the theoretical
model assuming no internal rotation will only be valid for
temperatures T < B/k where k is the Boltzmann constant and B
the rotational constant of the reactant molecule..

For relative kinetic energies of the reactants up to about 50
meV, the reactive cross section collisions are governed by the
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long-range interaction between the reactants. (1 meV corre-
sponds roughly to a temperature of 10 K). In the classical
trajectory model of Langevin,1,2 the initial state of the system
is characterized by the relative kinetic energy of the reactants
Et and the impact parameter b. Denoting the interaction potential
byV(R), the effective radial potential may then be considered
as a function of (b,Et,R)

where R is the intermolecular distance. At this stage, it is not
necessary to specify the exact form ofV(R). But for the capture
model to be valid, the distance R0 at which orbiting of the
reactants occurs, must be greater than about 5-6, where the
interaction is known with some precision. In this work, we shall
represent V(R) by its asymptotic form

where C6 is some known constant but the method can be applied
to any form of potential.

The usual procedure is to calculate, for some given the value
of R ) Rmx for which Veff(Et,b,R) is maximum. Then consider-
ing Rmx as a function of E and b, we determine the value of b
) bc for which Veff(Rmx) ) Et. We observe now that bc is a
function ofEt. In the capture model, it is assumed that the
reaction proceeds with unit probability ifb < bc but forbidden if
b > bc. In other words, the centrifugal barrier can only be crossed
if b < bc. Then, the reactive cross section is given by

This calculation is simple for interaction potentials of the form
R-n, when expressions both Rmx and bc can readily be obtained
in analytic form. For more general interaction potentials,
numerical procedures are required.

However, when as is usually the case, the main aim is to
determine rate coefficients, it is actually much simpler to
characterize the initial state of the collision system by Et and
the angular momentum by L ) b(2µEt)1/2 where µ is the reduced
mass.

The advantage of this procedure is that it is readily adaptable
to a semiclassical quantification of the relative angular momen-
tum and, as will become apparent later, makes it much simpler
to enforce angular momentum conservation.

As before, we determine, for a given value of L the radial
distance Rmx for which the effective potential Veff(L,R) is maximum.
Now Rmx is a function of only one variable, which makes the
subsequent calculations simpler. In conformity with the capture
model, the reaction for any given L is assumed to proceed with
unit probability if Et > Veff(L,Rmx)) but is forbidden if Et <
Veff(L,Rmx). To obtain the cross section, then if L is treated as a
continuous variable, we integrate over all possible L to obtain

where

For molecules with no internal rotation, a classical description of
L is satisfactory since the values of L which contribute most to the
cross section are large (of the order of 50-150). But when we
treat molecules with internal rotation, the rotational quantum
number j of a rotation state is quite small, in the range ranging
from 0 to 15, for which a semiclassical quantification is preferable.
So treating L as a semiclassical quantized variable Lsc ) L + 1/2,
then the effective radial potential may be defined as

The total cross section can be expressed as a sum over all possible
values of L.

The dependence of Rmx on L obtained from (7) differs a little
compared with the classical value obtained from (5), but since
subsequently the sum in (8) over all possible values of L, the end
result is not significantly affected.

In practice, for molecules with no internal rotation, it makes
little difference whether we use (5) or (8). But as we shall see
in the next section, when account must be taken of the internal
rotation, it is more convenient to use (8).

3. Calculation of the Rate Coefficient at Very Low
Temperatures

The rate coefficient can always be defined, but it is only when
the reactants are in thermal equilibrium that a practical calcula-
tion is simple. In this section, we determine the rate constant
when only the ground rotational state (j ) 0) of the molecule
is significantly populated. In this case the kinetic energy of the
reactants, Et ) E.

We first define the transition rate K0 (E) at a specific energy
E

The rate coefficient at a temperature T is then given by
integrating over the Maxwell distribution of E.

from which, using (8), we obtain

Veff(b, Et, R) ) V(R) +
Etb

2

R2
(1)

V(R) ) -
C6

R6
for R < R0 (2)

σ(Et) ) 2π∫0

∞
bP(Et, b) db ) 2π∫0

bc b db ) πbc
2

(3)

Veff(L, R) ) V(R) + L2

2µR2
(4)

σ(Et) )
π

µEt
∫0

∞
LPL(Et) dL (5)

PL ) 1 if Et g Veff(rmx) (6)
) 0 if Et < Veff(rmx)

Veff
sc (Lsc, R) ) V(R) +

Lsc
2

2µR2
) V(R) + (L + 1/2)2

2µR2
≈

V(R) + L(L + 1)

2µR2
(7)

σ(Et) )
π

2µEt
∑
L)0

∞

(2L + 1)PL(Et) (8)

K0(E) ) √(2E/µ)σ0(E) (9)

K0(T) ) 1
kT( 8

πµkT)1/2 ∫0

∞
Eσ0(E) exp(- E

kT) dE (10)
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Now, it is convenient to permute the integration over E with
the sum over L

Using (6), it is elementary to carry out the integration over E.
This leads to

where

This expression was used by Ramillon and McCarroll17 to study
ion-molecule reactions. We may remark that (14) is identical
to the result of the statistical capture model7,8 based on the
assumption that the reaction proceeds via an energetically
accessible transition state. For every value of L, there exists a
quasi-stationary transition state, and if accessible, the reaction
proceeds with unit probability. However, (13) is only valid at
very low temperatures T for whichT < B/k. So, we would not
expect (13) to be valid for temperatures exceeding 10-20 K
when the population of excited rotational states becomes
significant.

4. Calculation of the Rate Coefficients Including Rotation

Other considerations become important when the reactant
molecule has internal rotational energy. In section 3, the reactant
molecule has no internal rotation energy and the relative angular
momentum of the system L is conserved. But when the molecule
possesses an internal angular momentum j, the conservation of
the total angular momentum imposes additional constraints. A
general discussion of this problem is given by Levine.18

Fortunately, in the asymptotic region, where the interaction
potential is purely radial, the internal rotation is not coupled to
the relative angular momentum and so in this region the initial
relative angular momentum L is still conserved. Then, as in the
preceding section, the transition states can be labeled by a value
of L from 0 up to Lmx and their energies are determined uniquely
by the asymptotic potential and L. All transition states which
can contribute effectively to the reaction for temperatures less
than 300 K are defined by the asymptotic potential. It is this
simplification that makes the simple calculation possible for
exothermic reactions at low temperatures. The model would not
be valid for endothermic reactions, at least not in such simple
form.

So let us now consider the cross section as in section 3, when
the reacting molecule is in a specific initial rotation state j. First
of all, recalling the standard definition of the cross section for
a transition from a degenerate state, and by analogy with (10),
we may deduce that

where Et is, as before, the kinetic energy of the reactant molecule
initially in state j, but now the probability, denoted by
PL

jmdepends not only on L but also on j and m.
In the interaction region, that is to say for short intermolecular

distances, the interaction potential will involve all internal
coordinates of the reactants. This leads to a strong mixing of
all possible channels. However, not all states can be mixed. In
particular, there are restrictions related to the conservation of
total angular momentum. So, only states belonging to the
manifold of states of a given J can be coupled. On the other
hand, there is no coupling between states of different J. For a
transition state corresponding to a specific J, the strong coupling
theory assumes statistical mixing of the components of the J
manifold. So, a transition state corresponding to angular
momentum J will dissociate to reaction products with unit
probability.

Corresponding to a set of initial conditions specified by j, L
there are (2j + 1)(2L + 1) states. From this ensemble of states
we can construct a number of J states with values in the range

The probability of forming a specific J state is therefore18

from which we may deduce that

We may observe that J states can be formed from other
combinations of j and L. So when we sum over L, all possible
combinations of j and L are taken into account.

The rate constant for a reactant in state j is then given by

where QT is the partition function of the translation motion given
by

K0(T) ) 1
2µ

1
kT( 8

πµkT)1/2 ∫0

∞
π ∑

L)0

∞

(2L + 1)PL(E) exp(-
E
kT) dE (11)

K0(T) ) 1
kT( 2π

µ3kT)1/2 ∑
L)0

∞

(2L + 1)∫0

∞
dEPL(E) exp(- E

kT)
(12)

K0(T) ) 1
kT( 2π

µ3kT)1/2 ∑
L)0

∞

(2L + 1)∫EL*

∞
dE exp(- E

kT)
(13)

) ( 2π
µ3kT)1/2 ∑

L)0

∞

(2L + 1) exp(-EL*/kT)

EL* ) Veff(L, Rmx) (14)

σ̄j(Et) )
π

2µEt

1
2j + 1 ∑

L)0

∞

∑
m)-j

m)+j

(2L + 1)PL
jm(Et) (15)

|L - j| e J e L + j (16)
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(2L + 1)(2j + 1)

(17)

∑
m)-j

m)j

PL
jm(Et) ) ∑

J)L-j

J)L+j
2J + 1

(2L + 1)(2j + 1)
PL(Et) ) PL(Et)

(18)

σ̄j(Et) )
π

2µEt

1
2j + 1 ∑

L)0

∞

(2L + 1)PL(Et) (19)

Kj(T) ) 1
2πQT

1
2j + 1 ∫0

∞ ∑
L)0

∞

(2L + 1)PJ(Et) exp(- Et

kT) dE

(20)
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When there is no internal energy, that is for j ) 0, the result is
identical to expression 10.

As before, it is convenient to permute the integration over E
with the sum over L

Integration over E as in section 3 leads to

where

The total reaction rate is then given by

where Sr(T) is given by

and Qr(T) is the partition function of the reactant molecule. In
the case of a diatomic molecule whose electronic ground state
is of ∑ symmetry, Qr(T) is defined as

where Ej is the energy of the jth rotational level and σr ) 2 for
symmetric diatomic molecules and is unity for nonsymmetric
species.

Note also that in the case of molecules, whose ground state
is of Π symmetry, there is no rotational state with j ) 0.

It is of interest to compare (25) with the result of Quing Liao
and Herbst23 where the rate coefficient is expressed in an
analogous way as a sum over the angular momentum L, but
without the constraint of angular momentum conservation.
However, their rate coefficient is independent of the rotation
constant B, whereas in (25) the ratio Sr(T)/Qr(T) exhibits a strong
dependence on B.

5. Calculation for Interaction Potentials Varying as R-6

To illustrate some general features of the model, we shall
consider the case, where the long-range interaction potential
between the reactants can be expressed in the form

The effective radial potential Veff(R) has a maximum at R )
Rmx, where

Approximating the sum over L by an integral, we obtain

and the total rate coefficient can then be expressed as

Formula 30 for a reactant molecule with no internal rotation
reduces to the Langevin capture model. But, to our knowledge,
(30) does not seem to have been used previously to calculate
rate coefficients when the reactants have internal rotational
energy.

6. Rate Coefficient at High T

The quantities Sr(T) and Qr(T) must be calculated specifically
for each specific molecule at low temperatures when only a few
rotational levels contribute to the reaction rate. But for molecules
with small rotational constants, it is possible to obtain expres-
sions for Sr(T) and Qr(T) which are valid at temperatures greater
than 50-100K, by approximating the sum over j by an integral.
Then we have

If we set y ) (j + 1/2)2 we obtain

QT ) ( 2π
µkT)-3/2

(21)

Kj(T) ) 1
2πQT

1
2j + 1 ∑

L)0

∞

(2L + 1)∫0

∞
dEPL(E) exp(- E

kT)
(22)

Kj(T) ) 1
2πQT

1
2j + 1 ∑

L)0

∞

(2L + 1)∫Ej*

∞
dEt exp(- Et

kT)
(23)

) 1
2πQT

1
2j + 1 ∑

L)0

∞

(2L + 1) exp(-EL*/kT)

EL
* ) Veff(L, Rmx) (24)

K(T) ) 1
Qr(T) ∑

j)0

∞

Kj(T)(2j + 1) exp(-εj/kT) )

Sr(T)

2πQTQr(T) ∑
L)0

∞

(2L + 1) exp(-EL*/kT) (25)

Sr(T) ) ∑
j)0

∞

exp(-εj/kT) (27)

Qr(T) ) 1
σr

∑
j)0

∞

(2j + 1) exp(-Ej/kT) (26)

V(R) ) -C6/R6 (27)

Rmx ) (6C6µ

L2 )1/4

(28)

Veff(Rmx) )
L3

3√6C6µ
3
) L3

�

� ) 1

3√6C6µ
3

K0(T) ) ∫0

∞
2 dL exp[-�L3/kT] )

2�2π
µ

(2C6)
1/3(kT)1/6Γ(2

3) (29)

K(T) )
Sr(T)

Qr(T)
K0(T) (30)

Qr(T) ) 1
σr

∑
j)0

∞

(2j + 1) exp(-Ej/kT) =

1
σr
∫0

∞
(2j + 1) exp(-B

j(j + 1)
kT ) dj (31)
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Similarly, to evaluate Sr(T), we set z ) j + 1/2

Finally, we obtain

It is thus seen that combining (32) and (34) the total rate
coefficient is expected to decrease as T-1/3 in the higher
temperature range. For very low temperature, when only the
ground rotational is populated, the rate coefficient will increase
with temperature as T1/6. But as the temperatures increase, the
rate coefficient will attain a maximum around 10-20 K, and
then turn over to a T-1/3 dependence at higher temperatures. Of
course, the temperature where the maximum occurs will depend
on the particular nature of the reactant. But it is worth remarking
that the overall features of this simple model agree with
experimental observations.

8. Results and Discussion

To illustrate the consequences of angular momentum con-
servation, we present a small selection of results for some
representative systems, CN-O2, Si-O2, and Si-NO, which have
been the subject of much experimental and theoretical investiga-
tion. The rate coefficients are calculated in the interesting
temperature range from 0 to 300 K, where it is verified that all
transition states which contribute to the total rate corresponding
to values of L less than 150, which corresponds to a value of
Rmx> 6 b. The C6 coefficients for each system have been have
been estimated by the formula using the best experimental and/
or theoretical values of the dipole polarizability and dipole
moment. These are listed together with the experimental rotation
constants in Table 1.

In the case of the Si-O2 and Si-NO reactions, we have taken
account of the fine structure of the 3P ground state of the Si
atom using the procedure of Graff and Wagner21 adopted by

Dayou and Spielfiedel22 and Le Picard et al.29 The experimental
energies of the 3P0, 3P1, and 3P2 fine structure levels have been
adopted.

In the CN-O2 reaction, the generalization of formula 30 to
the case of two rotors has been used. The anisotropic contribu-
tion from the dipole quadruple interaction has been neglected,
since its effect is only likely to be important for the low
rotational levels (j ) 0, 1) of CN. Its effect on the more highly
excited rotational levels is minimal. Symmetry effects for the
O2 molecule are taken into account in the calculation of the
partition function. And in the case of NO, care must be taken
to exclude the j ) 0 rotational level, since the ground electronic
state is of Π symmetry.

The C6 coefficient if the long-range interaction is estimated
by the relation used by Woon and Herbst24

It may be remarked that the main contribution to the C6

coefficient comes from the first term. Besides, since the rate
coefficient is proportional to (C6)1/3 the results are not sensitive
to errors in the C6 coefficient. The main temperature dependence
of the rate coefficient is governed by the rotation constant, which
is given to high precision by spectroscopic measurements.

The anisotropic dipole-quadrupole interaction has not been
taken into account in the present calculations. Its effect may be
significant on the low rotation states j ) 0-2 but is much weaker
for the higher j states. So the overall effect is expected to be
weak for molecules with small rotational constants, which is
the case in this work. In any case, its inclusion should not affect
the main conclusions on the influence of internal rotation on
the reaction rate.

The results are presented in Tables 2-4. In all cases, we
observe a maximum of the rate coefficient at temperatures
around 10-20 K falling off rapidly between 20 and 100 K. It
is seen that the calculated rate coefficients reproduce the overall
features of the experimental measurements, whereas the simple
Langevin capture theory gives a slow T1/6 increase with
temperature for all T and overestimates the experimental rate
by more than a factor of 10 for temperatures of 100 K or higher.

Of course, we cannot expect perfect agreement since theory
assumes complete thermalization of the reactants, which may
not always be achieved in the experiments. But the results do
seem to indicate that the basic assumption of transition state

∫0

∞
(2j + 1) exp(-B

j(j + 1)
kT ) dj = ∫1/4

∞
exp(-By

kT ) dy )

kT
B

exp(-B/4kT) =
kT
B

(32)

Sr(T) ) ∑
j)0

∞

exp(-Ej/kT) ≈ ∫0

∞
exp(-B

j(j + 1)
kT ) dj =

1
2�πkT

B
(33)

Sr(T)

Qr(T)
) 1

σr

B
kT�πkT

B
) 1

σr
�πB

kT
(34)

TABLE 1: Values of the Atomic and Molecular Parameters
Required for the Calculation of the Rate Coefficienta

parameters Si CN O2 NO ref

ionization potential
I (e2/a0)

0.300 0.521 0.443 0.340 24

dipole moment µ
(ea0)

0 0.57 0 0.224 28

dipole polarizability
R (a0

3)
37.4 25.4 10.6 14.7 25, 26

rotation constant
B (e2/a0)

0 8.97 × 10-6 6.58 × 10-6 7..77 24

a All quantities are expressed in atomic units.

TABLE 2: Rate Coefficients (in units of 10-11 cm3 s-1) of Si
with O2

temperature
(K)

Langevin
rate constant

calcd reaction
rate constant

exptl reaction
rate constant

(ref 27)

1 34.44. 36.44
2 40.90 40.91
5 47.65 46.70

10 53.68 46.32 25.3
20 60.26 41.16 31.9
30 64.48 36.19 34.1
40 67.34 31.62 30.0
60 72.38 24.72
80 75.92 20.25

100 78.80 17.26 25.6
150 84.32 12.97
200 88.46 10.81 22.5
300 94.64 8.77 17.4

C6 ) 3
2

IAIB

IA + IB
RARB + µA

2RB + µB
2RA (39)
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theory, namely, the statistical mixing of channels states of a
specific total angular momentum, provides a satisfactory model
for the reaction.

Our results underline another important point. It is clear that
the rapid decrease of the rate coefficient with increasing T is
due to the increasing population of excited rotational states. This
may raise some questions about the use of experimental rate
coefficients in astrochemical modeling. The density of interstel-
lar clouds is much lower than that in laboratory experiments
and it may be expected that the rotational temperature of
interstellar molecules may be quite different from the kinetic
temperature of the interstellar gas. Under these conditions, the

reactive rate coefficient should be computed using reactive cross
sections given by (19) and not from (30).

9. Conclusion

It has been shown that the rate coefficient of exothermic
reactions involving neutral molecules is profoundly influenced
by the internal rotational energy of the reactants. Calculations
using transition state theory, which ensure the conservation of
angular momentum in the reaction, are successful in reproducing
the main characteristics of the measured rate coefficients in the
temperature range from 0 to 300K.
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JP905000Y

TABLE 3: Rate Coefficients (in units of 10-11 cm3 s-1) of Si
with NO

temperature
(K)

Langevin
rate constant

calcd reaction
rate constant

exptl reaction
rate constant

(ref 27)

1 19.96 19.96
2 22.40 22.29
5 26..10 23.93

10 29.30 23.14 25.1
20 32.88 21.02 30.0
30 35.18 18.82 34.1
40 36.91 16.67 31.3
60 39.49 13.26 28.6
80 41.43 10.99 25.0

100 43.00 9.44
150 46.00 7.18 14.6
200 48.27 5.99
300 51.64 4.77 8.2

TABLE 4: Reaction Rates (in units of 10-11 cm3 s-1) of CN
with O2

temperature
(K)

Langevin
rate constant

(10-11 cm3s -1)

calcd reaction
rate constant

(10-11 cm3 s-1)

exptl reaction
rate constant

(10-11 cm3 s-1)
(ref 12)

10 53.86 21.08
13 13.4
20 60.46 13.50
25 12.8
26 10.8
30 10.121
40 67.86 8.19
44 8.86
48 9.26
49 8.29
60 72.61 6.02
75 5.75
80 76.16 4.05

100 79.06 4.12
150 84.58 2.95
170 3.24
200 88.74 2.37
295 2.27 -2.48
300 94.95 1.78
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